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Systematic Sequences of Even-tempered
Gaussian Primitives in Electron Correlation Studies
Using Many-Body Perturbation Theory

Stephen Wilson*

Science Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, U.K.

The use of systematic sequences of even-tempered Gaussian primitive
functions in electron correlation studies using diagrammatic many-body
perturbation theory is examined. The “‘s limit” electronic energy of the Be
atom and the ‘sp limit” energy of the Ne atom have been computed as
examples. The use of the Hartree extrapolation procedure to obtain empirical
upper bounds for the basis set limit is investigated. The empirical lower bound
for the basis set limit suggested by Schmidt and Ruedenberg is examined for
calculations which include electron correlation.

Key words: Basis set — Even-tempered basis set — Universal basis set — Cor-
relation energy — Many-body perturbation theory.

1. Introduction

The choice of basis set in studies of atomic and molecular systems ultimately
determines the accuracy of the calculations. Within the Hartree—-Fock molecular
orbital model, empirical recipes for choosing basis sets are well established for
both Slater exponential functions [1] and Gaussian functions [2]. The best choice
of basis sets for calculations which take account of electron correlation effects is
not so well documented.

The concept of an even-tempered basis set has been shown to be of great value in
atomic and molecular studies [3-15]. Even-tempered basis functions span the
one-electron space in a fairly uniform fashion. They allow fairly large basis sets to
be generated while avoiding linear dependence. Raffenetti [8] was, for example,
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able to devise Slater basis sets for heavy atoms using the even-tempered concept
with relatively modest computing effort.

Feller and Ruedenberg [9] and Schmidt and Ruedenberg [10] have recently
devised schemes for systematically extending basis sets of the even-tempered
type. They have applied the scheme to a number of atomic systems using sets of
Gaussian primitive functions with the Hartree~Fock molecular orbital model.
This systematic approach enables the convergence of the calculations with respect
to basis set to be examined and the basis set limit estimated. It appears that it is
possible to derive empirical lower bounds and empirical upper bounds to the basis
set limit by making assumptions about the convergence properties with respect to
basis set size.

In this paper we examine the application of the systematic scheme for extending
basis sets devised by Ruedenberg and his collaborators to calculations which
include electron correlation effects. The diagrammatic many-body perturbation
theory [16] is used to account for electron correlation. This approach currently
forms the basis of one of the most accurate treatments of electron correlation
effects in molecules. For example, it has recently been possible [15] to recover
approximately 84% of the correlation energy of the nitrogen molecule at its
equilibrium nuclear geometry using third-order many-body perturbation theory
together with a universal even-tempered basis set. It is probable that basis set
truncation is the largest source of error in this and similar calculations. In this
paper calculations are reported for the ground state of the beryllium atom and the
neon atom using the systematic sequence of basis sets given by Schmidt and
Ruedenberg [10]. The purpose of this work is to examine the convergence
properties of the many-body perturbation series with respect to basis set size for
these two atoms. We include only functions of symmetries which arise at the
Hartree—Fock level in these prototypical calculations.

2. Systematic Sequences of Even-Tempered Gaussian Primitives

The concept of an even-tempered basis set has been shown to be useful in atomic
and molecular calculations both at the Hartree-Fock level [3-11, 13, 14] and
including correlation effects [12, 15]. In an even-tempered basis set the orbital
exponents are given by a geometric series

L=aBlf, k=1,2,....N, (1)

where / denotes the symmetry type of a particular set of orbitals. The elements of
the overlap matrix then obey the relationship

Ai,j = Ai+1,j+1; Vi,f (2)

For an even-tempered basis set to approach a complete set as the value of N; is
increased the values of a; and B; must be functions of N,. Since

>0 Bi>1 Bliso (3a)
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as

N;> 0 (3b)
Ruedenberg and coworkers [9, 10] have suggested that the empirical forms

Inln B =bIn N;+b| (4)
and

nae,=a;ln(Bi—1)+aj (5)

are useful and have demonstrated this at the Hartree-Fock level for a series of
atoms. In this work we take the values of the constants ay, a;, b;, b; from the work
of Schmidt and Ruedenberg [10] and perform calculations of the correlation
energy using diagrammatic perturbation theory for the beryllium atom and the
neon atom. For beryllium the basis set is restricted to functions with s symmetry
while for neon the basis set is restricted to s and p functions. Thus the convergence
to the “‘s limit” is examined for Be and convergence to the “sp limit”’ for Ne. The
basis sets used for the beryllium atom will be denoted by [ns]. The basis sets
employed for the neon atom consisted of 2n functions of s symmetry and n
functions of p symmetry. They are denoted by [2ns/np]. These basis sets have
been termed energy balanced by Schmidt and Ruedenberg [10]. For beryllium
[ns],n=6,8,...,20basis sets were used while for neon{2ns/npl,n =3,4,...,9
were used.

3. Many-Body Perturbation Theory

The many-body perturbation theory approach to electron correlation energies in
molecules has been described in detail previously [16] and the purpose of the
present section is merely to introduce notation.

Two different zero-order Hamiltonian operators are used in the present study: the
matrix Hartree-Fock model Hamiltonian and the shifted Hamiltonian [16].
Quantities derived from the latter Hamiltonian will be distinguished by a tilde.
From third-order calculations we can form [N/ M ] Padé approximants, N + M =3
and we denote the energies corresponding to these by E[N/M]. The [2/1]
Padé approximants to the perturbation series are of particular interest because of
their invariance properties [17]. Finally, we denote by E(var) the variational
upper bound obtained by substituting the first-order wave function ®,+A®; in
the Rayleigh quotient and treating A as a variational parameter.

4. Computational Details

The computations described in this work were performed on the IBM 370/165
computer at the S.R.C. Daresbury Laboratory.

The integrals over Gaussian primitive functions, self-consistent-field and trans-
formation phases of the calculation were performed by using the ATMOL3 suite
of programs [18]. The self-consistent-field iterations were continued until no
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off-diagonal element of the Fock matrix in the molecular orbital basis had a
magnitude greater than 107>, (Increasing this accuracy parameter to 10~°
produced changes of less than 1077 in all of the energies calculated for the
beryllium atom using the [6s] basis set and the [20s] basis set.) The correlation
calculations were done with the diagrammatic many-body perturbation theory
programs of Silver [19, 20] and the present author [21].

5. Results and Discussion

The results of the calculations on the beryllium atom are presented in Table 1 and
those for the neon atom are given in Table 2. For both the beryllium atom and the
neon atom the self-consistent field energies are, of course, in exact agreement with
those given by Schmidt and Ruedenberg [10]. For all of the energy quantities
given in Table 1 for the beryllium atom there is a change of less than 20
microhartrees on passing from the [18s] to the [20s] basis set. For the neon atom
the energy quantities given in Table 2 change by less than 1.5 millihartrees on
passing from the [16s/8p] to the [18s/9p] basis set. The energy quantities given in
Tables 1 and 2 are seen to decrease monotonically as the size of the basis set is
increased except for E[3/0] and E[2/1] for the Be atom. Note that if S(N)
denotes the n-electron space which may be generated from a one-electron basis
set consisting of N functions then, if Egs. (1), (4) and (5) are used to define basis
sets, in general S(N)Z S(N +1) and therefore the energy corresponding to
S(N +1) is not necessarily lower than that corresponding to S(N). For the
beryllium atom using the [20s] basis set the differences |[E[3/0]—-E[2/1]|=
~0.3mH (millihartree) and |E[3/0]-E[2/1]]=~0.1 mH, suggest that the
perturbation expansion with shifted denominators is the more rapidly convergent
of the two series considered in this work. The differences |E[3/0]-E[3/0] =
~0.5 mH and |E[2/1]- E[2/1]|= ~0.2 mH suggest that the [2/1] Padé approx-
imants are a more appropriate representation of the energy than the [3/0] Padé
approximants. For the neon atom, using the [18s/9p] basis set the differences
|E[3/0]1-E[2/1]=~0.1MH,  |E[3/0]-E[2/1]|=~4.6mH,  |E[3/0]-
E[3/0]|=~5.7mHand |E[2/1]- E[2/1]| = ~1.2 mH suggest that the [2/1] Pade
approximant constructed from the perturbation series corresponding to the
Hartree~Fock model is to be preferred. The convergence properties of the model
and shifted perturbation series have been considered in some detail previously for
the Be and Ne atoms [22].

Following Schmidt and Ruedenberg [10] we used the Hartree extrapolation
technique to estimate the basis set limit of the various energy values. Thus we
define the quantity

Eo(N)=(E(N)E(N-2)-E(N-1)/(E(N)-2E(N-1)+E(N-2))  (6)

where E(N) denotes the energy corresponding to a particular basis set, E(N — 1)
and E{N —2) the energies corresponding to the next two smaller basis sets. This
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expression provides an empirical upper bound to the basis set limit. The expres-
sion

Ew(N)=Ex(N)~[E(N)~Ex(N)] ™
is an empirical lower bound to the basis set limit. The average of these two values

EauN) = (E=(N)+Ex(N))/2 (8)
may be regarded as a “best” estimate of the basis set limit and the quantity

Dw(N) = (Ew(N) = Ex(N))/2 ©)

is an estimate of the accuracy of the ‘‘best” value. In Table 3 we give values of the
empirical upper bounds, empirical lower bounds, averaged values and deviations
for each of the energy values calculated for the Be atom. The corresponding
results for the neon atom are displayed in Table 4. It can be seen that the values of
Dy(N) are smaller for the matrix Hartree-Fock energies than the correlation
energies. The correlation energy is more sensitive to the degree of completeness
of the basis set than is the matrix Hartree-Fock energy.

6. Concluding Remarks

In this paper, we have shown by means of prototypical calculations on the
beryllium atom and the neon atom that the use of systematic sequences of basis
sets can prove useful in calculations including electron correlation effects. The
approach offers a tractable solution to the basis set truncation problem which
seems to be the largest source of error in most accurate calculations on small
molecules.

We note that the use of systematic sequences of even-tempered basis sets could be
employed in calculations using universal basis sets [11-15]. A given sequence of
universal even-tempered basis sets could then be employed for all atoms of the
first-row of the periodic table and probably the second row also.
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