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Systematic Sequences of Even-tempered 
Gaussian Primitives in Electron Correlation Studies 
Using Many-Body Perturbation Theory 

Stephen Wilson* 

Science Research Council, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, U.K. 

The use of systematic sequences of even-tempered Gaussian primitive 
functions in electron correlation studies using diagrammatic many-body 
perturbation theory is examined. The "s limit" electronic energy of the Be 
atom and the ' sp  limit" energy of the Ne atom have been computed as 
examples. The use of the Hart ree  extrapolation procedure to obtain empirical 
upper bounds for the basis set limit is investigated. The empirical lower bound 
for the basis set limit suggested by Schmidt and Ruedenberg is examined for 
calculations which include electron correlation. 

Key words: Basis set - Even- tempered basis set - Universal basis set - Cor- 
relation energy - Many-body perturbation theory. 

1. Introduction 

The choice of basis set in studies of atomic and molecular systems ultimately 
determines the accuracy of the calculations. Within the Har t ree-Fock  molecular 
orbital model, empirical recipes for choosing basis sets are well established for 
both Slater exponential functions [1] and Gaussian functions [2]. The best choice 
of basis sets for calculations which take account of electron correlation effects is 
not so well documented.  

T h e  concept of an even-tempered basis set has been shown to be of great value in 
atomic and molecular studies [3-15]. Even- tempered basis functions span the 
one-electron space in a fairly uniform fashion. They allow fairly large basis sets to 
be generated while avoiding linear dependence. Raffenetti [8] was, for example, 
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able to devise Slater basis sets for heavy atoms using the even-tempered concept 
with relatively modest computing effort. 

Feller and Ruedenberg [9] and Schmidt and Ruedenberg [10] have recently 
devised schemes for systematically extending basis sets of the even-tempered 
type. They have applied the scheme to a number of atomic systems using sets of 
Gaussian primitive functions with the Hartree-Fock molecular orbital model. 
This systematic approach enables the convergence of the calculations with respect 
to basis set to be examined and the basis set limit estimated. It appears that it is 
possible to derive empirical lower bounds and empirical upper bounds to the basis 
set limit by making assumptions about the convergence properties with respect to 
basis set size. 

In this paper we examine the application of the systematic scheme for extending 
basis sets devised by Ruedenberg and his collaborators to calculations which 
include electron correlation effects. The diagrammatic many-body perturbation 
theory [16] is used to account for electron correlation. This approach currently 
forms the basis of one of the most accurate treatments of electron correlation 
effects in molecules. For example, it has recently been possible [15] to recover 
approximately 84% of the correlation energy of the nitrogen molecule at its 
equilibrium nuclear geometry using third-order many-body perturbation theory 
together with a universal even-tempered basis set. It is probable that basis set 
truncation is the largest source of error in this and similar calculations. In this 
paper calculations are reported for the ground state of the beryllium atom and the 
neon atom using the systematic sequence of basis sets given by Schmidt and 
Ruedenberg [10]. The purpose of this work is to examine the convergence 
properties of the many-body perturbation series with respect to basis set size for 
these two atoms. We include only functions of symmetries which arise at the 
Hartree-Fock level in these prototypical calculations. 

2. Systematic Sequences of Even-Tempered Gaussian Primitives 

The concept of an even-tempered basis set has been shown to be useful in atomic 
and molecular calculations both at the Hartree-Fock level [3-11, 13, 14] and 
including correlation effects [12, 15]. In an even-tempered basis set the orbital 
exponents are given by a geometric series 

~k=atfl~; k =  l , 2  . . . . .  NI (1) 

where l denotes the symmetry type of a particular set of orbitals. The elements of 
the overlap matrix then obey the relationship 

Ai,j = Ai+l.j§ Vi, ] (2) 

For an even-tempered basis set to approach a complete set as the value of N~ is 
increased the values of t~ and fit must be functions of N~. Since 

al ~ 0 /3t ~ 1 B~ r' ~ 0o (3a) 
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as 

Nl -* oe (3b) 

Ruedenberg and coworkers [9, 10] have suggested that the empirical forms 

In In/3t = bl In Nz + b ~ (4) 

and 

In o~l -- al In (/31- 1 ) + a l  (5) 

are useful and have demonstrated this at the Har t ree-Fock  level for a series of 
atoms. In this work we take the values of the constants at, a~, bl, b~ from the work 
of Schmidt and Ruedenberg [10] and perform calculations of the correlation 
energy using diagrammatic perturbation theory for the beryllium atom and the 
neon atom. For beryllium the basis set is restricted to functions with s symmetry 
while for neon the basis set is restricted to s and p functions. Thus the convergence 
to the "s limit" is examined for Be and convergence to the "sp limit" for Ne. The 
basis sets used for the beryllium atom will be denoted by Ins]. The basis sets 
employed for the neon atom consisted of 2n functions of s symmetry and n 
functions of p symmetry. They are denoted by [2ns/np]. These basis sets have 
been termed energy balanced by Schmidt and Ruedenberg [10]. For beryllium 
Ins], n = 6, 8 . . . . .  20 basis sets were used while for neon [2ns/np], n = 3, 4 . . . . .  9 
were used. 

3. Many-Body Perturbation Theory 

The many-body perturbation theory approach to electron correlation energies in 
molecules has been described in detail previously [16] and the purpose of the 
present section is merely to introduce notation. 

Two different zero-order  Hamiltonian operators are used in the present study: the 
matrix Har t ree -Fock  model Hamiltonian and the shifted Hamiltonian [16]. 
Quantities derived from the latter Hamiltonian will be distinguished by a tilde. 
From third-order calculations we can form [N/M]  Pad6 approximants, N + M = 3 
and we denote the energies corresponding to these by E [N/M] .  The [2/1] 
Pad6 approximants to the perturbation series are of particular interest because of 
their invariance properties [17]. Finally, we denote by E(var) the variational 
upper bound obtained by substituting the first-order wave function ~0 + A~I in 
the Rayleigh quotient and treating ~ as a variational parameter.  

4. Computational Details 

The computations described in this work were performed on the IBM 370/165 
computer  at the S.R.C. Daresbury Laboratory.  

The integrals over Gaussian primitive functions, self-consistent-field and trans- 
formation phases of the calculation were performed by using the ATMOL3 suite 
of programs [18]. The self-consistent-field iterations were continued until no 
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off-diagonal element of the Fock matrix in the molecular orbital basis had a 
magnitude greater than 10 -5 . (Increasing this accuracy parameter to 10 -9 
produced changes of less than 10 -7 in all of the energies calculated for the 
beryllium atom using the [6s] basis set and the [20s] basis set.) The correlation 
calculations were done with the diagrammatic many-body perturbation theory 
programs of Silver [19, 20] and the present author [21]. 

5. Results and Discussion 

The results of the calculations on the beryllium atom are presented in Table 1 and 
those for the neon atom are given in Table 2. For both the beryllium atom and the 
neon atom the self-consistent field energies are, of course, in exact agreement with 
those given by Schmidt and Ruedenberg [10]. For all of the energy quantities 
given in Table 1 for the beryllium atom there is a change of less than 20 
microhartrees on passing from the [18s] to the [20s] basis set. For the neon atom 
the energy quantities given in Table 2 change by less than 1.5 millihartrees on 
passing from the [16s /8p]  to the [18s /9p]  basis set. The energy quantities given in 
Tables 1 and 2 are seen to decrease monotonically as the size of the basis set is 
increased except for/~[3/0] and/~[2/1] for the Be atom. Note that if S ( N )  
denotes the n-electron space which may be generated from a one-electron basis 
set consisting of Nfunctions then, if Eqs. (1), (4) and (5) are used to define basis 
sets, in general S ( N ) r  S ( N + I )  and therefore the energy corresponding to 
S ( N + I )  is not necessarily lower than that corresponding to S ( N ) .  For the 
beryllium atom using the [20s] basis set the differences [ E [ 3 / O ] - E [ 2 / 1 ] [ =  

- 0 . 3 m H  (millihartree) and ]/~[3/0]-/~[2/1]]=~0.1mH, suggest that the 
perturbation expansion with shifted denominators is the more rapidly convergent 
of the two series considered in this work. The differences IE[3/O]-:E[3/O]I  = 

-0 .5  mH and 1E[2/1]-/~[2/111 = -0 .2  mH suggest that the [2/1] Pad6 approx- 
imants are a more appropriate representation of the energy than the [3/0] Pad6 
approximants. For the neon atom, using the [18s /9p]  basis set the differences 
IF[3/O]-E[2/1]I--- -0.1 MH, 1/~[3/0]-/~[2/1][ = -4 .6  mH, [E[3/0]-  

[3/011 = -5.7  mH and ]E[2/1] -/~[2/1]l = - 1.2 mH suggest that the [2/1] Padg 
approximant constructed from the perturbation series corresponding to the 
Hartree-Fock model is to be preferred. The convergence properties of the model 
and shifted perturbation series have been considered in some detail previously for 
the Be and Ne atoms [22]. 

Following Schmidt and Ruedenberg [10] we used the Hartree extrapolation 
technique to estimate the basis set limit of the various energy values. Thus we 
define the quantity 

Eoo(N) = ( E ( N ) E ( N  - 2) - E ( N  - 1 ) 2 ) / ( E ( N )  - 2 E ( N  - 1) + E ( N  - 2)) (6) 

where E ( N )  denotes the energy corresponding to a particular basis set, E ( N  - 1) 
and E ( N  - 2) the energies corresponding to the next two smaller basis sets. This 
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expression provides an empirical upper bound to the basis set limit. The expres- 
sion 

A 

Eoo(N) = E~o(N) - [E(N)  - Eoo(N)] (7) 

is an empirical lower bound to the basis set limit. The average of these two values 

EAr(N) = (Eoo(N) +/~oo(N))/2 (8) 

may be regarded as a "best"  estimate of the basis set limit and the quantity 

Do~(N) = (Eoo(N) -/~oo(N))/2 (9) 

is an estimate of the accuracy of the "best"  value. In Table 3 we give values of the 
empirical upper bounds, empirical lower bounds, averaged values and deviations 
for each of the energy values calculated for the Be atom. The corresponding 
results for the neon atom are displayed in Table 4. It can be seen that the values of 
Doo(N) are smaller for the matrix Har t ree-Fock  energies than the correlation 
energies. The correlation energy is more sensitive to the degree of completeness 
of the basis set than is the matrix Har t ree-Fock energy. 

6. Concluding Remarks 

In this paper, we have shown by means of prototypical calculations on the 
beryllium atom and the neon atom that the use of systematic sequences of basis 
sets can prove useful in calculations including electron correlation effects. The 
approach offers a tractable solution to the basis set truncation problem which 
seems to be the largest source of error in most accurate calculations on small 
molecules. 

We note that the use of systematic sequences of even-tempered basis sets could be 
employed in calculations using universal basis sets [11-15]. A given sequence of 
universal even-tempered basis sets could then be employed for all atoms of the 
first-row of the periodic table and probably the second row also. 
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